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1. INTRODUCTION

Schoenberg [20] introduced a spline approximation method of the form
Sf(x) = 'L.!(gi) ep;(x) where epi(X) are certain spline functions. This method
was further studied by Marsden and Schoenberg [16] and Marsden [14, 15],
where uniform convergence theorems, order of convergence estimates,
variation diminishing properties, and other results analogous to those for
Bernstein polynomials are obtained. Marsden [14] and independently
Karon [11] and Karlin and Karon [10] generalize these ideas to produce
Tchebycheffian spline approximation methods. Scherer [18] exploited the
approximation properties of these operators to obtain direct and inverse
theorems as well as saturation results for spline approximation. Using a
certain modification of Sf he also obtained in [19] similar results for Lv,
I ~p < 00.

The purpose of this paper is to construct some multidimensional spline
approximation methods based on the one-dimensional operator S. We
construct these in two ways: by forming certain tensor products and by
mimicking the methods in [6-8] for obtaining spline blended interpolation
schemes.

We study questions of convergence for continuous and for Lv functions,
rates of convergence for classes of smooth functions, and convergence of
derivatives. In a later paper we shall discuss Jackson- and Bernstein-type
theorems for these operators as well as analogs for the multidimensional
case of the direct, inverse, and saturation theorems of Scherer.

* Supported in part by USAFOSR 69-1812B.
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2. SCHOENBERG'S ApPROXIMATION MEn-rOD

We review Schoenberg's approximation method for functions of one real
variable (see [14, 16, 20)). Let m, n be integers with m ;;c: 2, n ?c 1, and let
Ll = {xo , Xl"'" Xn+l}, where a = X o < Xl < ... < xn+l = b. Let X_mC=

Xl-m = ... = X o = a and b = X n+l = ... = X n+m +l . For i = -·f/I, ... , n we
define

(2.1)

where

Mm(x, y) = (y - x)';'

and M[x; Xi , ... , Xi+m+l} denotes the (m + 1)8t divided difference of the
function M m with respect to the variable y over the points Xi , ... , Xi+m+l .

The r/J;(x) are normalized B-splines of degree m with knots at the {Xi}~+l.

For j = -m,... , n set

gj = Xj+! + ... + xHm

m
r. = Xj + ... + xHm

"', m + 1 '
(2.2)

It is shown in [9, 14, 16} that for a ~ X ~ b

-'ttl

-1n

n

L g~2) 4>;(x) = x2,

-m

(2.3)

(2.4)

(2.5)

(2.6)

and

whenever 1 ~ p < 00.

j = -m,... , n,

j = -m, ... , n,

(2.7)

(2.8)
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From the definition (2.2) it is clear that a = Lm < ... < gn = b. Given
f defined on [a, b], Schoenberg's approximation method is

n

Sm .•d(x) = L f(gi) 4>iCx).
-m

We summarize some of the properties we need (see [14-16,20]).

LEMMA 2.1. Let Sm,LJ be defined as in (2.9). Then

Sm,LJUo(X) = uo(x),

where uo(t) = 1, U1(t) == t;

Sm,LJf(x) ;?: 0 if f(t);?: 0 on [a, b];

o ~ Sm, LJu2(x) - u2(x) ~ h2(m, Ll),

where u2(t) == t2,

lb- a -Ihem, Ll) = min IV2m ' ((m + 1)/12)1/2.1 ,

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

iff J/m -+ 0; (2.14)

Ilf - Sm,LJfll", ~ (l + ((m + 1)/12)1/2) w(f; J), (2.15)

and

Ilf - Sm,LJfll", ~ (1 + b;2a) w (/; m~/2)' (2.16)

where w(f; t) is the modulus of continuity off;

if f E C1[a, b], J/m -+ 0, then II(Sm,LJf - 1)' II", -+ O. (2.17)

We also have the following additional (new) properties.

LEMMA 2.2. Let Sm,LJ be defined as in (2.9). Then iffE C1[a, b],

(
m + 1 )1/2 ( ( m + 1 )1/2) -II Sm,LJf - fll", ::s::; 2 12 1 + 12 .1w(l'; J) (2.18)

and

( b-a)( b-a) ( I)II Sm.LJf - fll", ::s::; 2 (2m)1/2 1 + 2i"72 w 1'; m1/2 . (2.19)
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Moreover, iffE C2[a, b], then

and

:< 2 'i in II (m -;."--~) L:f2
~ I, ,00 12 . (2.20)

(2.21)

Proof It is shown in [3] (see also [5, 17]) that if L", is a sequence of
positive linear operators which reproduce linear functions, and iffE ella, h],
then

where

f-Lm = II LmU - x)2 11;;2;

and that iffE C2[a, h], then

II L",f - fllw ~ 2 111" 1100 f-Lm2
•

For Lm = Sm,,j , we have by (2.12) that f-Lm ~ h(m, LI), where h is defined in
(2.13), and the results follow.

For approximation of functions fE Lp[a, b] it is useful to introduce the
operator

(2.22)

(see [19]).

3. MULTIVARIATE ApPROXIMATION METHODS

In this section we define some multivariate spline approximation methods
based on the operators Sm,,j and Sm,,j defined in Section 2. It is convenient
to consider only the case of two variables. We construct methods which lead
to tensor product splines and certain spline blended functions (for the use
of tensor product splines in multivariate interpolation see [1,4]; spline
blended interpolating functions were considered by Gordon [6-8]).

Let r = [a, b], r = [c, d], and R = r X r. Let m l , m2 ~ 2 be integers,
and suppose Ll l = {Xi}~l+l, Ll 2 = {Yi}~2+l are partitions of rand r satisfying

c = Yo < Yl < ... < Yn.+l = d.
(3.1)
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We define {gi}~;' and {g~2)}~;, as in (2.2-3) and the functions {<Pi(X)}~;'
lIn1

as in (2.1). We denote by .:I'm •.l the space spanned by the <Pi' Let {1]jL~ ,
(2) 11 11 t t •

{1]j L~2' {lji;(Y)L~2' and 9.;,'a . .l2 be defined analogously for the partition
L1 2 • Let {y,}~~. be the analog of the ~'s for L1 2 •

We consider the following approximation methods for functions I defined
onR:

nl nz

SmtA ® Sm.AI = L L f(gi , 1]j) (Mx) lji;(y),
-m1 -m2

(3.2)

nl nz

SmlA EEl Sm.AI = L f(gi, y) <p;(x) + L f(x, 1];) ljij(Y) - SmlA ®Sm.Af,
-m1 -m2

(3.4)

and

(3.5)

Whenever there is no possibility of ambiguity, we shall write subscripts
1 and 2 in place of m1, L1 1 and m2, Ll 2 in (3.2-5); e.g., we write

Sl ® S2 = Sm1..lt ® Sm•. .l•.
The operators (3.2-3) map C[R] into the subspace of tensor product

splines

,'LJ fV\ rLJ {I C(m1-l.m2-1)[R]·· h t 1 [ ].rml ..ll I($; J m2'.l. = E • In eac rec ang e Xi, Xi+l X

[y o y ] f(mt+l.o) - f(o.m 2+l) - 0
" j+1, - - ,

i = 0, 1,... , n1 , j = 0, 1,... , n2}.

The operators (3.4-5) map C[R] into the subspace of spline blended
functions

We emphasize that none of the operators (3.2-5) are projections.
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Finally, we note

nl n2

51 @5d ,= L 5 2[f(gi, .)](y) 1Ji(X) = L 5 1 [J(', 1];)](x) !fly)· (3.6)
-'/HI -m 2

THEOREM 3.1. The operators defined in (3.2-5) are linear. Moreover,

51 @ 52 g == g for all g(x, y) = ex + f3x + yy + oxy (3.7)

51 EB 52 g == g for all g(x, y) = ex + xhz(y) + yhl (x), hI' h2 arbitrary
(3.8)

the operators (3.2), (3.3) are positive. (3.9)

4. ApPROXIMATION OF CONTINUOUS FUNCTIONS

In this section we discuss the behavior of the operators (3.2), (3.4) for
functionsfE C[R] as ml' m 2 ,..11 , ..1 2 range over a sequence of values (usually
the degrees ml or m2 -+ 00 and/or the partitions Ll l , Ll 2 are refined). We shall
obtain rates of convergence for smooth functions as well as basic convergence
results.

We discuss first the convergence question for the tensor spline method
(3.2). We base our results on the fact that (by the triangle inequality)

II SI @ Sz/ - fll = II f f [f(gi' 1]j) - f(x, y)] 1Ji(X) !fj(y)11
-m1 -m2

~ II I I [J(ti' 1]j) - f(x, 1]j)] 1J;{x) !flY)11
-m2 -rn1

+ II f f [J(x, 1]j) - f(x, y)] !fly) 1Ji (x)11
-m1 -m2

~ II 5I1L y)(x) - f(x, y)11 + II Sz/(x, ')(y) - f(x, y)ll·
(4. I)

(See also Schultz [21]).
We need the following multivariate version of a theorem of Bohman [2].

LEMMA 4.1. Suppose L
n"

n
2

' nl ,n2 = 1,2,... is a sequence of operators of
the form

nl n2

Ln"nJ(x, y) = I I !(gi,n, ' 'Y)j,n2) @i,j,n"n2(X' y), (4.2)
-nIl -m2
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where (/Ji.j.n
i
.n

2
(x, y) are any functions defined on Rand

a = g-ml.nl < < gnl.nl = b

c = 1]-m 2. n2 < < 1]n 2. n2 = d.

Then

for every f E C[R] as nl , n2 ---+ Cl) (4.3)

implies

~ m;lx I gi+l.nl - gi.nl I ---+ 0

(mtx!1]j+l,n2 - 1]j.n2 I ---+ O.

Our main convergence result for tensor splines is

(4.4)

THEOREM 4.2. Suppose m l , m2 , Ll l , Ll 2 range over a sequence of values.
Then

II Sl ® Sd - flloo ---+ 0 for all f E C[R] (4.5)

iff
and

Proof The sufficiency follows from (4.1) and (2.14). The necessity is a
consequence of Lemma 4.1 and the fact that

3 1 (Xi+1 - Xi) (Xi+ml - Xi)
- = max ~ max = m;lx(gi - gH),
ml i m l i ml l

and

For the blending spline functions we have

THEOREM 4.3. Suppose ml , m2 , Ll l , Ll 2 range over a sequence of values
such that 3 1/ml ---+ 0 or 3 21m2 ---+ O. Then

[I Sl EB Sd - fl[oo ---+ 0

Proof We have

for all fE C[R]. (4.6)

nl

(Sl EB Sd - f)(x, y) = L: c?i(X)[f(gi ' y) - !(x, y)]
-m1

+ ~ ifilY) [f(x, 'Y}j) - I !(gi, 'Y};) c?i(X)]
-m2 -m1

(4.7)
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n[

R1(x, y) = I <Pi(X)[f(g; , y) - f(x, y)] = (Sd(-' y))(x) - f(x, y).
-nil

Now

for some x* E [a, b]. Applying (2.1 4) shows that if2/m 2 -+ °is sufficient for
(4.6). The sufficiently of if1/m1 follows in a similar way.

More precise estimates of the rates of convergence of the operators (3.2)
and (3.4) can be obtained in terms of the smoothness off. For IE C[R] we
define (see, e.g., [13])

max If(x2' Y2) - f(x1 , Yl)l.
IX2-X, I<;;'h,
IY2- y ,1 <;;,h2

(xl'y,),(x2' Y2)ER

(4.8)

THEOREM 4.4. Let IE C[R]. Then we have

II SI ® Sd - 11100

( (m+ 1)1/2) - ((m + 1)1/2) -
~ 1 + ---TI- w(f; J 1 , 0) + 1 + ---TI- w(f; 0, J 2), (4.9)

II SI ® Sd - 11100

:s; (1 + b2~2a) w (J; m~/2 ,0) + (1 + d2~2C) w (J; 0, ml/2 ), (4.10)

II SI E8 Sd - 11100

. [( (m1 + 1)1/2) . - ( (m 2 + 1)1/2) . _]:s; 2mm 1+ -1-2- w(f; J 1,0), 1+ -1-2- w(f; 0, J 2) ,
(4.11)

:s; 2min [(1 + b2~2a) w (J; m~/2 ,0), (1 + d2~2C) w (J; 0, ml/2 )].

(4.12)

Proof. Applying (2.15) to (4.1) yields (4.9) while (2.16) leads to (4.10).
To prove (4.11), we use (4.7) and (2.15). This yields

( (
m2 + 1)1/2) -II SI E8 Sd - 11100 :s; s~p 1 + -1-2- w(Rlx, .); J 2)
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But

sup w(R1(x, .); .12) = SUp SUp I R1(x, h) - R1(x, Yt)1 :(; 2w(f; 0, .12),
x x IY2-Yl!~.J 2

Similarly, (4.12) follows from (2.16).

Using (2.18-19) we may prove in a similar way

THEOREM 4.5. Let I n,O), pO.l) E C[R]. Then

(m1 + 1)1/2( (m1 + 1)1/2) - <Io)-II S1@Sd-III:(;2-1-2-1+-1-2-iJ1w(j';iJ1'0)

+ 2 (m\~ It 2
(1 + (m\~ It 2

) ..12W(j(O,1); 0, .12)

(4.13)

, ( b - a )( b - a) (1,0). 1 )
" Sl @ S21 - fll", ~ 2 (2m1)1/2 1 + 21J2 wi, m~/2 ,0

( d - c ) ( d - C) (0.1). 1)+ 2 (2m 2)1/2 I + 21 /2 wi, 0, m~/2 '

(4.14)

. [(m + 1)1/2( (m + 1)1/2) ( )II Sl EEl Sd - III", :(; 4 mm --l2 1 + T, .11w(1 1.°;..11 ,0),

(m2
1i It2(1 + (m 2

1i It2
) ..12w(j(Q,l); 0, ..12)],

(4.15)

[(
b - a )( b - a) ((1,0). 1 )II S1 EEl Sd - III", :(; 4 min (2m

1
)1/2 1 + 21 / 2 wi, m~/2 ,0 ,

( (~m~)~2 ) (1 + d2-;;2c ) w ( fO.1); 0, mi/2 )]'

(4.16)

Similarly, (2.20--21) leads to

THEOREM 4.6. Let p2.0),j<O,2) E C[R]. Then

" Sl @ Sd - III", :(; 211 1(2.0)11", (m\~ 1) ..112+ 211 1(0.2)1100 (m\~ 2) ..122,
(4.17)

II S1 @ Sd - 11100 :(; (b - a)2111(2.0) 1100/m1 + (d - c)2111 (0.2) 1100/m2, (4.18)



32 MUNTEANU AND SCHUMAKER

4 . (; r(2,O), (111 1 +- 1) A 2 !·(O.2)mm I,. ,lac 12 '"-11'. C\2 1) .62
2
),

(4.19)

II SI ffi Sd - f:i.o 2 min[(b - a)2li f(2.0) !lcc11l11 , (d -- ci i O,2) ,,)1112],

(4.20)

In the following theorem we obtain an estimate for S1 ffi Sd - f in terms
of the measure of smoothness

max I f(x2 , Y2)
Ix2-x1 1:::;111
IY,-Y,! c:;h,

(Xl'y,).(x,.Y,)ER (4.21)

defined for f E C[R], (cf. (4.8».

THEOREM 4.7. LetfEC[R]. Then

. , ( h - a)( I d - C) (. 1 1)II SI ffi S2f - IiI ~ 1 +-21 / 2 I T -21 / 2 Y f;~ ,~. (4.23)ml 1112

Proof We have

p = II SI ffi Sd - flix

nl n2

~ I I y(f; Ii X - ~i I 81811, I y - Y}; I 828;1) <Pi(X) fly),

where 81 , 82 > 0 are any constants. By the triangle inequality,

nl n2

p ~ I I y(f; 81 , 82)(1 + 811
[ X - ~i 1)(1 + 8;1 IY - Y}; I) <p;(x) flY)

nl n2

= y(f; 81 , 82)(1 + 811 I I x - ~i I <p;(x»(1 + 8;1 I IY - Y}; I fly».

But the Holder inequality implies L~~" I x - ~i I <Pi(X) ~ h(ml , ..1 1) (cf. [15]).
A similar estimate holds for the other sum. Choosing 81 = 3 1 , 82 = 3 2

leads to (4.22), while 81 = I/m~12, 82 = Ilm~/2 results in (4.23).
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5. ApPROXIMATION OF L p FUNCTIONS

In this section we discuss the behavior of the operators (3.3), (3.5) for
functions f E Lp[R], I ~ p < 00, as the degrees nil' n1 2 and the partitions
Ll 1 , Ll 2 take on a sequence of values.

We discuss first the tensor spline operator (3.3).

THEOREM 5.1. Let fE Lp[R]. Suppose m1 , ni2 , Ll 1 , Ll 2 range over a
sequence of values such that lI1/ml --+ 0, lI2/m2 --+ 0. Then

(5.1)

Proof We use the Banach-Steinhaus theorem and the fact that C[R] is
dense in Lp[R]. First we prove that 81 ® 82 are uniformly bounded (w.r.t.
m 1 , rn 2 , Ll 1 , Ll 2) as operators from Lp[R] into itself. Since 81 ® 8d = 818d
if suffices to show that the operators

(5.2)

and

(5.3)

are uniformly bounded from Lp[R] into itself. We concentrate on (5.2).
Let

(Mx)
K(x, u) = ~ _ ~ ,

HI i

It is easily seen that

81 f(x, y) = rK(x, u)f(u, y) duo
o

Applying the Holder inequality yields

II 8dllp ~ II [( K(x, u) Ifeu, y)IP dut
P

[( K(x, u) dut
q t .

But
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b d b .b

f f f K(x, u) : f(u, y)i1' du dx dy ~;;: sup J K(x, u) dx Uil~
a c a '1./ a

Similarly, we have II 8dilv ~ I!filv .
To complete the proof of Theorem 5.1, we show that (5.1) holds for

fE C[R]. We have

1181 ®8d - fllv

~ Ilf - SI ® Sdiiv + I, f I 1>;(x) ifiJCy)
[-m

1
-m

2
('i+1 - 'i)(YHI - Yj)

J"+1 fYi+1
X [I('i , Yj) - feu, v)] du dv'i )lj

~ (b - a)I/P Ilf - 51 ® Sdlloo + w(f; illrX('i+1 - 'i)' illtX(YJ+1 - Yj»·

Now ('i+1 - 'i) ~ (gi+1 - gH) which goes to zero by Lemma 4.1.
By Theorem 4.2, the properties of modulus of continuity, and the hypoth

eses, all of these terms go to zero, and the theorem is proved.

THEOREM 5.2. Let fE LAR]. Suppose ml' m 2 , .:::1 1 , .:::1 2 range over a
sequence of values such that .11 m1 -+ 0 or .12 m 2 -+ O. Then

(5.4)

Proof Clearly 81 EB 82 = 81 + 82 - 81 ® 82 are uniformly bounded
operators from LP[R], (see the proof of Theorem 5.l). To complete the proof,
we show (5.4) holds for fE C[R]. In analogy with (4.7) we have

(81 EB 8d - 1)(x, y) = R1(x, y) - (82R l (x, ')(y) (5.5)

where

R l (x, y) = (8dC y»(x) - f(x, y).

Then

1181 EB 8d - fll~ ~ II R1(x, y) - (82R1(x, '»(Y)II~,

~ (b - a) suprI Rl (x, y) - 82Rl (x, .)(y)/P dy
II! C

= r I R1(x*, y) - S2Rl(X*, .)(y)\P dy(b - a)
c

(5.6)
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for some x* E [a, b]. The theorem follows from the fact that for any g E L:I>[I"],
II S2g - g ll~ --+ 0 provided 321m2 --+ O. (The proof of this proceeds exactly
as in the multidimensional Theorem 5.1.)

6. CONVERGENCE OF DERIVATIVES

To discuss the derivatives of the splines (3.2-3) we need further notation.
Let Ll l = {XO, Xl'"'' Xn +l} be a partition of [a, b] satisfying

1

Then we define for i = I - m1 , ... , nl

r- - (Xi+l + ... + Xi+ml-l)
• - m

l
- I .

Similarly we define for i = 2 - m1 , ... , nl

g.= = (Xi+l + ... + Xi+ml-2)
, m

l
- 2 .

(6.1)

(6.2)

(6.3)

(6.4)

We note that gi-l < ti- :'( ti and gi-l :'( tr < ti-' The rpi- and rpi= are
B-splines of degree ml - 1 and ml - 2, respectively. Corresponding to
a partition Ll 2 of [c, d] we define if;j-(y), if;j=(Y), 7)j- and 7)j= analogously.
Then for example, SmCl •.1

1
is the operator

nl

Sml-lAg(x) = L rpi-(X) g(ti-)'
I-m1

We discuss the case of the partial derivative with respect to x.

LEMMA 6.1. Let i(l.O) E C[R]. Then

Moreover, there exists afunction r(x, y) E C[R] such that

(6.6)
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Proof To obtain (6.5) we apply Lemma I of [14] to the expression (3.6).
By the mean value theorem

I(gi' 7}1') - f(gH , YJJ = /'([,0)( E, -n,)
(gi - ~i-1) ,S, , 'J} ,

where ~i-1 ~ ti ~ ti . Thus (6.7) holds with

r(~i-' Y];) = f'l.Ol(ti ,1);) - f(l,Ol(~i-' Tj;). (6.8)

Clearly we can choose rex, y) E erR] satisfying (6.8) such that (6.6) holds.

THEOREM 6.2. Let j<l,OJ E C[R]. Suppose 1111 , mz , ..11 , LIz range over a
sequence of values such that 1J1/m1 ~ 0 and 1J2/m2~ O. Then

(6.9)

Proof By (6.7)

II [s t9:' S j' - 1](1.0) II - iI S fv\ S f(1.0) - 1(1,0)
mi,Al \:.Y m2 • .J2 IXl - II ml-l.Lll '0 1n2 • .d2

The first term goes to zero by Theorem 4.2. For the second term we have

[I Sml-l.Lll C2l Sm•• <J/II", ~ II r II", ~ w(f1
•
0
); max(gi+l - ;i), 0). (6.11)

I

Since the hypotheses of this theorem imply STII
1

.L1
1

® Sm•.LJJ converges
uniformly to f, Lemma 4.1 implies max(gi+1 - gi) ~ 0, and the proof is
complete.

We can also give a rate of convergence result for the derivative.

THEOREM 6.3. Let fil,O' E C[R]. Then

II [s r'X'S f' - f](1.0) II ,< (2 + (m1+1 )1
/
2) w( /(1,0). 1J 0)

mloLll \U TII •. Ll. 00 '" 12 ' 1,

+ (1 + (m2 +1() w(f<I·o\ 0, 1JJ.
12 (6.12)

Proof We combine (6.10), (6.11) and Theorem 4.4, noticing that
maxi (~i+l - gi) ~ 1J1 .
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The analogs of Theorem 6.2, 6.3 hold also for the (0, I)-derivative if
f lO ,I) E C[R]. We now consider second derivatives.

LEMMA 6.4. Let jl2,O) E C[R]. Then

nl n2

[SI @ Sd](2,O)(X, Y) = L L v? f(gi , 1];) r/Jr(x) ifilY),
2-m1 -m 2

where

f(gi' 1];) - f(gi-l , 1];) f(gi-l, 1];) - f(gi-2 , y];)

VN(gi , 1];) = __(-=-ge-i ------"-ge-i-~I)-----;--.:---_____,,_____,_-----'-=(g--'---i--"'-I---'g'-'-i--=2)-
(gi- - gi-~I)

and fi-2 < ti < gi .
Proof We apply Lemma 2 of [14, p. 35] to (3.6).
To prove a convergence result, we need a multivariate version of another

result of Bohman [2], which we state without proof.

LEMMA 6.5. Suppose L n1 ,n
2

, n1 , n2 = 1,2,... is a sequence of operators
of the form (4.6) with tfJ i .;,n

1
,n

2
(x, Y) ~ 0, and suppose (4.3) holds. Then given

any 01 ,°2 > °
L L tfJi ,;,n1,n2(X, Y) -+ 1

1'\'''1-'''1<51 !ni,n2- y l<B 2

and

L L tfJ i ,;,n1,n2(X, y) -+ °
l<i,n1-"'1;;'51 Ini,n

2
- y l;;,5 2

uniformly in (x, y) ERas n1 , n2 -+ 00.

(6.14)

(6.15)

THEOREM 6.6. Let f l2 ,O) E C[R]. Let m1 , m2 be fixed and suppose

and

Suppose n1 , n2 -+ 00. Then for any compact subset K contained in the interior
ofR,

II [Sm1,.:l1 @ Sm2Af - j](2,O) 11K -+ °
where II . 11K denotes the uniform norm on K.
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Proof By Lemma 6.4

E2(x, y) fl [Sl ® Sd ~ n(2.0)

nl U2

= I I epr(x) fly)[/2.0)(ti, Y]j) Bi - j(2.0)(X, y)], (6.16)
2-m1 -m2

where Bi = (ti - ti-2)/2(ti- - ti-l)' Let R be a rectangle such that
K eRe interior (R). Given E > 0 we show that there exists Nl , N2 such
that IE2(x, Y)I < (ml llj(2.0) 1100 + l)E for (x, y) E R if ni > Ni , i = 1,2.

We collect some facts. Since nl, n2 -.. 00 the splines Smc2,L1, ® Sm
2

.L1
2
f

converge for every fE C[R]. Thus by Lemma 4.1, ti~ - f::-l -.. 0 and
YJj - "1;-1 -.. 0 as nl , n2 -.. 00. Moreover, by Lemma 6.5, given 81 , 82 > 0
there exist N l , N2 such that ni > N i , i = 1,2, implies

I I epi~(X) fly) < E.

1<;--xl;;.81 1~I-YI;;'82

For i = 1,2,... , n l - ml, Bi === 1. Also B i ~ m l - 1.
We split the sum in (6.16) into two parts. First

I ~ I I~ m1 1Ij(2,O) 1100 E.

Ix-<; -I ;;.81 IY-~II ;;.82

Also if nl is sufficiently large

I I I I~w (/2,0); max I x - ti I, 0).
Ix-<;-1<81 IY-~;1<82

Now maxi I x - ti I ~ 21n1 + 81 , Thus we may choose °1 , O2 sufficiently
small (and N l , N 2 sufficiently large) so that

As in the one dimensional case (see [14, p. 36]), Sl ® Sd(2.0) does not
converge uniformly to jl2.0) on all of R. Similar results hold for the (0, 2)
and (1, 1) derivatives. Finally, we state without proof parallel results for
the operator Sl EB S2 .

THEOREM 6.7. Suppose jll.O) E erR] and that m l , m 2 , ..1 1 , ..1 2 range over
a sequence of values such that 3 11ml -.. 0 or 3 21m2 -.. O. Then

II(SI E8 Sd - 1)(1.0) 1100 -.. O.

THEOREM 6.8. Theorem 6.6 holds for Sl EB S2 with either nl -.. 00 or
n2 -.. 00.
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7. REMARKS

1. Schoenberg's approximation method (2.9) reduces to the mth degree
Bernstein polynomial in case n = O. Similarly, we can also define the operator
(3.2) for n1 = n2 = 0 and it will coincide with the (ml' m2)-degree two
dimensional Bernstein polynomial (see [12, 21D. The operator (3.2) can also
be defined for m1 = mz = 1, but it reduces to the bilinear interpolating
spline so we have excluded this case.

2. The (Mx) and flY) in the operators (3.2-5) can be replaced by
Tchebycheffian B-splines as in [10, 11, 14]. Many of our results hold for the
resulting T-spline operators.

3. Throughout this paper we have assumed that the points in the partitions
AI' A 2 were distinct. This can be replaced by the requirement that at most
m1 x's coalesce in Al or mz x's in Az without difficulty. As in [10, 11, 14]
the splines rpi and fj then have multiple knots.

4. As in the one dimensional case, it may be desirable to specify the
nodes {gi}~~l and {7Jj}~;'2 rather than the partitions AI' A2 . The question of
when specified nodes can be achieved by admissible collections of knots
reduces to the one-dimensional case studied in [10, 11, 14].

5. For ease of exposition we have concentrated on the case of two dimen
sions. Analogous multivariate approximation methods can also be defined
for an arbitrary dimension d, and our results extend easily. For d > 2 it
is possible to construct a variety of other operators intermediate between
the tensor product 81 @ 8z (which is an analog of the minimal approximation
methods) and the d-dimensional version of the Boolean sum 81 E8 8 2 (which
is an analog of the maximal approximation methods) [6-8].

6. Theorem 4.2 can also be based on a multidimensional version of
Volkov's Theorem [22] and the fact that II 81 @ 8 2[t 2 + S2](X, y) - X Z - y2

11 ;(

h2(m 1 , AI) + h2(m2 , A2).

7. Theorem 4.7 was suggested by the referee.
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